Algorithmen

Einführung in Algorithmen

Lektion 1

Was ist ein Algorithmus?

- Definition Algorithmus:
 - Ein Algorithmus ist eine **Abfolge eindeutiger Handlungsanweisung** für die Lösung von Problemen.
 - **Eindeutig** bedeutet, dass jeder Einzelschritt zu 100% klar ist und *keinen Interpretationsspielraum* lässt.
 - Algorithmen können in verschiedenen Sprachen formuliert werden wie menschliche Sprachen oder Programmiersprachen.
 - Für die Problemlösung wird eine bestimmte **Eingabe** (Input) Schritt für Schritt in eine bestimmte **Ausgabe** (Output) überführt.

Analogie: Algorithmus ist wie ein (sehr klares) Kochrezept

Beispiel: Karamell-Bonbon

100 g Zucker und 2 EL Wasser in Pfanne geben. Bei mittlerer Hitze erwärmen, bis der Zucker goldbraun ist. Das Caramel auf geölte Alufolie geben und auskühlen lassen.

Menschl. Sprache

```
topf.input(sugar(100,g),water(2,es))
platte.on(.75)
while not(topf.inhalt.getcolor() == "goldbraun")
        warte(1000,ms)
alufolie.input(topf.inhalt ())
platte.off()
while not(alufolie.inhalt.gettempdeg() < 20)
        warte(10000,ms)</pre>
```


Pseudocode

Flussdiagramm

Beispiele Algorithmen in Informatik

 Primzahl: Zahl wird eingegeben, Algorithmus überprüft, ob Zahl eine Primzahl ist oder nicht

Wichtig z.B. für Verschlüsslungstechniken.

• **Spiel TicTacToe**: Computer, der gegen Menschen TicTacToe spielen kann

• Liste mit Zahlen sortieren:

 $[42,3,7] \rightarrow [3,7,42]$

Aufgabe A1: Wasserhahn

• Siehe Wiki

Zurück zur Definition

- «Ein Algorithmus ist eine Abfolge eindeutiger Handlungsanweisung für die Lösung von Problemen.»
 - Der Algorithmus muss das Problem lösen ...
 - ... man muss also zum Wasserhahn kommen
 - Algorithmus darf also **keine Endlosschleifen** produzieren:
 - Sich immer im Kreis drehen
 - Immer gegen Wand laufen
 - •
- «Eindeutig bedeutet, dass jeder Einzelschritt zu 100% klar ist und keinen Interpretationsspielraum lässt.»
 - «Drehe dich nach links» ist nicht eindeutig
 - «Drehe dich um 90 Grad nach links» ist eindeutig

Mögliche Lösung

- 1. Stehe auf
- 2. Drehe dich um 90 Grad nach rechts
- 3. Laufe vorwärts, bis du eine Wand siehst
- 4. Drehe dich um 90 Grad nach links
- 5. Laufe vorwärts, bis du den Wasserhahn siehst

Lektion 2

Aufgabe A2: Subtraction Game

Siehe Wiki

Aufgabe A2 (Subtraction Game)

- Regeln:
 - 21 Bleistifte
 - 2 Spieler:innen nehmen abwechselnd je 1-3 Stifte weg.
 - Wer den letzten Stift nehmen kann, hat gewonnen.
- Warum ist das Spiel interessant?
 - Gibt optimale Spielstrategie ...
 - welche dem Computer als Algorithmus beigebracht werden kann
- Auftrag & Ziel:
 - Gegeneinander spielen (verwendet eure Schreiber)
 - Optimale Spielstrategie finden ...
 - o ... und als Algorithmus in menschlicher Sprache formulieren

Struktogramme

Erinnerung: Was ist ein Algorithmus?

- Definition Algorithmus:
 - Ein Algorithmus ist eine **Abfolge eindeutiger Handlungsanweisung** für die Lösung von Problemen.
 - **Eindeutig** bedeutet, dass jeder Einzelschritt zu 100% klar ist und *keinen Interpretationsspielraum* lässt.
 - Algorithmen können in **verschiedenen Sprachen** formuliert werden wie menschliche Sprachen oder Programmiersprachen.
 - Für die Problemlösung wird eine bestimmte **Eingabe** (Input) Schritt für Schritt in eine bestimmte **Ausgabe** (Output) überführt.
- **Struktogramme:** Möglichkeit, um Algorithmen darzustellen, etwas zwischen normaler Sprache und Programmiersprache
- Kann damit gewissermassen auf Papier Programmieren

Aufbau Struktogramm

- 3 Arten von Elementen:
 - 1. Einfache Anweisungen [Rechteck]

2. Schleifen

3. Verzweigungen

Beispiel Wasserhahn

1. Einfache Anweisungen:

Stehe auf

Gehe 0.5m nach vorne

Drehe dich um 90 Grad nach links

2. Schleifen:

Solange keine Wand vor dir

Gehe 0.5m nach vorne

3. Verzweigungen:

Aufgaben B

Aufgabe B1 (Wasserhahn revisited)

- Schreibe deinen Algorithmus, der eine Person zum Wasserhahn bringt als Struktogramm um. Verwende nur die vorgegebenen drei Arten von Elementen.
- Erweitere Algorithmus: Die Person soll, nachdem sie den Wasserhahn erreicht hat, Wasser davon trinken.
- Es kann sein, dass Wasserhahn bereits läuft.

Tipps ▶

Bearbeiten

Aufgabe B2 (Karamell-Bonbons revisited)

Wandle das Flussdiagramm mit dem Algorithmus zur Herstellung von Karamell-Bonbons in ein Struktogramm um.

Aufgabe B3 (Subtraction Game revisited)

Der 'Computer' spiele gegen eine Spieler:in. Schreibe nun den Algorithmus, mit dem der Computer das Subtraction Game spielen soll, als *Struktogramm* für drei verschiedene Versionen:

- 1. Der Computer soll immer beginnen und natürlich immer das Spiel gewinnen.
- 2. Diesmal soll die Spieler:in beginnen. Der Computer soll gewinnen, sobald die Spieler:in einen Fehler macht.
- 3. Erweitere dein Struktogramm aus 2., so dass beide Fälle (Computer beginnt (nicht)) abgedeckt sind.

Variablen, Ein- und Ausgaben und Co.

Eingaben, Ausgaben und Variablen

- Wollen nun etwas mathematischere Algorithmen anschauen
- Benötigen folgende Elemente:
- Variablen:
 - = ist Zuweisungsoperator

• Eingaben:

 Runde Klammern: Art des Inputs (Zahl, Wort, Text) i = 42

x = [Eingabe] (Zahl)

Ausgaben:

• Wiki: mehr Infos dazu

Ausgabe x

Einzelgleich (=) vs. Doppelgleich (==)

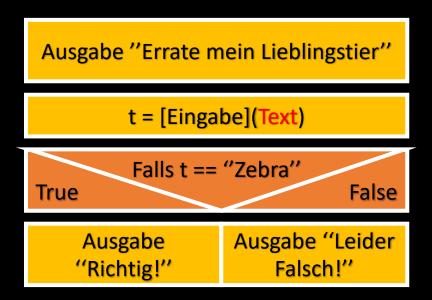
- Einzelgleich (=):
 - Z.B. 'i = 3'
 - Ist Zuweisungsoperator
 - Weist Variable links den Wert rechts zu
 - Macht keinen Sinn:
 - '3 = i'
 - '2i = 3'
- Doppelgleich (==):
 - Z.B. 'i == 3'
 - In Bedingungen in Falls-Verzweigungen und Solange-Schleifen
 - Ist Vergleichsoperator

Beispiel

Spiel, in dem Lieblingszahl von jemandem erratet werden soll

Ausgabe "Errate meine Lieblingszahl"

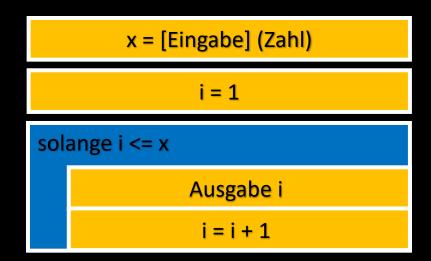
z = [Eingabe] (Zahl)



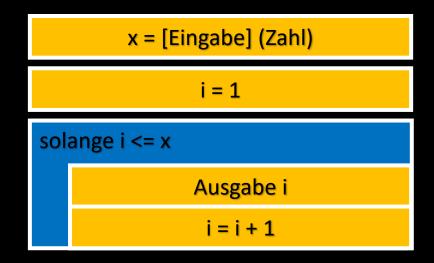
Ausgabe "Richtig!"

Ausgabe "Leider Falsch!"

Einzelgleich (=) vs. Doppelgleich (==)


• Auftrag: Schreibe ähnliches Spiel, in dem jemand dein Lieblingstier erraten soll. Verwende Einzel- und Doppelgleich.

- Beachte: **Anführungs- und Schlusszeichen** bei Text um zwischen Text und Variablen unterscheiden zu können.
- Text wird String genannt.


Beispiel: Zählen

- Algorithmus:
 - Zahl eingeben (z.B. 3)
 - Algorithmus zählt von 1 auf diese Zahl hoch, gibt alle Zahlen au

Evaluieren von Algorithmus

- Struktogramm für konkretes Beispiel durchgehen ...
- Alle Werte in Tabelle notieren

- Muss genau so notiert werden
- Genaue Regeln auf nächster Slide

Bedingungen	х	i	Ausgabe
	3		
		1	
i <= x? True			
			1
		2	
i <= x? True			
			2
		3	
i <= x? True			
			3
		4	
i <= x? False			

Evaluieren von Algorithmus

• Regeln:

- Spalte ganz links: heisst **Bedingungen**, notiere hier Bedingungen von Schleifen und Verzweigungen und Angabe, ob erfüllt oder nicht (True / False)
- Spalte ganz rechts: heisst **Ausgabe**, notiere hier Werte, die ausgegeben werden
- Spalten dazwischen: Werte von **Variablen** in *Reihenfolge*, in der sie im Code vorkommen
- Pro ausgeführte Zeile Code, genaue eine Zeile in der Tabelle!

Bedingungen	X	i	Ausgabe
	3		
		1	
i <= x? True			
			1
		2	
i <= x? True			
			2
		3	
i <= x? True			
			3
		4	
i <= x? False			

Aufgaben D

• Siehe Wiki