Seite anzeigenÄltere VersionenLinks hierherCopy this pageFold/unfold allNach oben Diese Seite ist nicht editierbar. Du kannst den Quelltext sehen, jedoch nicht verändern. Kontaktiere den Administrator, wenn du glaubst, dass hier ein Fehler vorliegt. # Machine Learning ## Syllabus * Git & GitHub: proficiency assumed * Otherwise: [[talit:git_github]] * Jupyter Notebook [1w] * crash course: Edit, run, publish * Login to shared notebook * setup your own server * Q-Learning Intro [3w] * Along the lines of [[https://github.com/microsoft/ML-For-Beginners/tree/main/8-Reinforcement|Microsoft ML Chapter 8]] * Assumes we can observe the entire state. * Reward / action only depends on the current state of the game. * Immediate reward given by game score (points) * Q-Function is a table (Q-Table) dynamically updated by Bellman-formula * Hidden Markov Models (a tiny bit of theory) * -> what if we cannot observe all the internal state? * -> infer probability of hidden (latent) state from observations * Deep Reinforcement Learning * Q-Function is not a table, but a neural network, which is trained by repeatedly running the game and updating the neuron states. * builds on top of [[neuronales_netzwerk_handschrift:|sca's NN program]] * Prereqs: * OpenAI Gym environment: https://gym.openai.com/docs/ * keras / tensorflow? ef_informatik/machine-learning.txt Zuletzt geändert: 2022-03-29 09:58von hof