Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen der Seite angezeigt.

Link zu der Vergleichsansicht

Beide Seiten, vorherige Überarbeitung Vorherige Überarbeitung
Nächste Überarbeitung
Vorherige Überarbeitung
talit:csharp_oop_sca [2025-06-16 13:30] – [4. Auftrag: Simulation des N-Body-Problems mit MonoGame] scatalit:csharp_oop_sca [2025-06-16 14:47] (aktuell) – [Physik] sca
Zeile 240: Zeile 240:
 Da aber alle anderen $N-1$ Himmelskörper eine solche Gravitationskraft auswirken, müssen sämtliche einzelnen Kraftvektoren aufsummiert werden (Superpositionsprinzip), die **resultierende Kraft** ist dann also: Da aber alle anderen $N-1$ Himmelskörper eine solche Gravitationskraft auswirken, müssen sämtliche einzelnen Kraftvektoren aufsummiert werden (Superpositionsprinzip), die **resultierende Kraft** ist dann also:
 $$\vec{F}_{i} = G m_i \sum_{k=1,k\neq i}^N m_k \frac{\vec{r}_k-\vec{r}_i}{|\vec{r}_k-\vec{r}_i|^3}$$ $$\vec{F}_{i} = G m_i \sum_{k=1,k\neq i}^N m_k \frac{\vec{r}_k-\vec{r}_i}{|\vec{r}_k-\vec{r}_i|^3}$$
 +
 +Ein Problem, das oft auftaucht, ist das folgende: Kommen sich zwei Massen sehr nah, so wird $|\vec{r}_k-\vec{r}_i|^3$ extrem klein. Dadurch wird die Kraft sehr gross und eine Masse kann dann regelrecht aus dem Bildschirm geschleudert werden. Dies soll verhindert werden. Dazu addiert man dem Nenner einen kleinen konstanten *Softening-Term* $s$:
 +$$\vec{F}_{i} = G m_i \sum_{k=1,k\neq i}^N m_k \frac{\vec{r}_k-\vec{r}_i}{(|\vec{r}_k-\vec{r}_i| + s)^3}$$
  
 ==== Idee Code ==== ==== Idee Code ====
  • talit/csharp_oop_sca.1750080615.txt.gz
  • Zuletzt geändert: 2025-06-16 13:30
  • von sca