Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen der Seite angezeigt.

Link zu der Vergleichsansicht

Beide Seiten, vorherige Überarbeitung Vorherige Überarbeitung
Nächste Überarbeitung
Vorherige Überarbeitung
gf_informatik:algorithmen_ii [2025-12-05 13:08] – [Mathematische Algorithmen] hofgf_informatik:algorithmen_ii [2025-12-13 20:56] (aktuell) – [Aufgabe B2: Quersumme] hof
Zeile 129: Zeile 129:
 ++++ ++++
  
-<nodisp 2>+<nodisp 1>
 ++++Lösung:| ++++Lösung:|
 <html><bottom-editor> <html><bottom-editor>
Zeile 192: Zeile 192:
 ++++ ++++
  
-<nodisp 2>+<nodisp 1>
 ++++Lösung:| ++++Lösung:|
 <html><bottom-editor> <html><bottom-editor>
Zeile 246: Zeile 246:
  
  
-<nodisp 2>+<nodisp 1>
 ++++Lösung:| ++++Lösung:|
 <html><bottom-editor> <html><bottom-editor>
Zeile 281: Zeile 281:
    * Schreibe eine Funktion `prime_factors(x)`, die eine Zahl x entgegennimmt und deren (geordnete) Primfaktoren von x ausgibt.    * Schreibe eine Funktion `prime_factors(x)`, die eine Zahl x entgegennimmt und deren (geordnete) Primfaktoren von x ausgibt.
  
-<nodisp 2>+<nodisp 1>
 ++++Lösung:| ++++Lösung:|
 Mit den Funktionen `is_prime` und `is_divisor` von oben ([[https://wtp.ethz.ch/#?code=NobwRAdghgtgpmAXGGUCWEB0AHAnmAGjABMoAXKJMNGbAewCcyACVMgCwB0Jnvi4AZszQBnAPrE0AN1GMAFJJn8IxAs0WyGASkTdm-3mE5GwAcTQAjFgBUGAVzjMAXnYYAfgMYBrNQHc4EDwaIozMcBjMAOZQEE5OUOwANmiRcAzM1uGJacxSdEHSaMrEwiJkaiEQZcwAYlCJInCYxi1GPAYMcGSuBUoBJQCk6oUh6QC8Y8wADHp8gqVi2Aw0cHIQOnoGrcbmVhn2ji7u3moC9Q3MPOEQjgAKyzDxSaXlzJXVdQ1N220GwkI8AA8zAATLp2n99J1ugweJ9Gpt9CxJiDEcwAMTMACiImYnTQHnYrwsomcrmYAHVXE44IlcvlLmTmGQ4GUAswALRRAAnFkcrLCGHZkQYADeRI1OjxMmhsukWCF1FAJWjMWQAFQAD2YE0ualIgVYbglLOY2q82SF6UaEXquKpDBpiTWWmYdhUzF8aHS7G5ZBZPG1fPxZFxqQE7uUzQhnvYsscLEBkzY7EwIgAjkwXeDIQY0EJRBIRvIIGoyBsY7n9JiKd7mOwoHyrkLpVkcuHI-yOQA-Zhea53B5PRJqPn9ALRquQ6E9Wp2uBov7I5nMADUzAAjKrmABpAet-PpDsqLu9r0-xvsgfMe40YcAQjRM9h-wcaLmALgmrIiweq3WOZbCYOyWCwkiOBA3KEmUIripKg53gkdKwRKOR2oyRyeF4zTAb8Bg3N-OqMuuW4xr4cbZJcdAsIWSwrGsX7loBuYEcurFrpuT5dLOrGzCeQh0fAYhnB4ZCMCI2bvrhuxgWgCEwBydReGJUr0jwPC2nYAhsik47pDUdCJKkZLHNhPxoiJKlESC1bMAI3rVIJC4xp0qAYPw4yXNuAAihT8IyFi4My7COBgHidMqGCRMwTmXHYMDBri7pkLKnqOBFhKbpOBjkfGeJwG5J7pL2G7MZCmIGekcBQJlTn6n5CYhflhUecwyrMIk-TRe1HCOLFoiLgYmJQMMMijNlua5ZRhbBPIrnoEVpw1SpFZTn883uTkkwbUVzAAPR2ctjCDbmdEQGQciWYwWgneVzC4HJiQlFdDB8VOmI7a1HgxFRHVdTkfKjUUcAlIFh2iaEPbMgwQVehwwUQYxMV_hNkIvURrG_vRL03Tw3BOcJR0MBJGAXRg2B2BdWjU2AAC-AC6QA&layout=%5B%22Editor%22%2C%22Console%22%5D|hier in WTP]]): Mit den Funktionen `is_prime` und `is_divisor` von oben ([[https://wtp.ethz.ch/#?code=NobwRAdghgtgpmAXGGUCWEB0AHAnmAGjABMoAXKJMNGbAewCcyACVMgCwB0Jnvi4AZszQBnAPrE0AN1GMAFJJn8IxAs0WyGASkTdm-3mE5GwAcTQAjFgBUGAVzjMAXnYYAfgMYBrNQHc4EDwaIozMcBjMAOZQEE5OUOwANmiRcAzM1uGJacxSdEHSaMrEwiJkaiEQZcwAYlCJInCYxi1GPAYMcGSuBUoBJQCk6oUh6QC8Y8wADHp8gqVi2Aw0cHIQOnoGrcbmVhn2ji7u3moC9Q3MPOEQjgAKyzDxSaXlzJXVdQ1N220GwkI8AA8zAATLp2n99J1ugweJ9Gpt9CxJiDEcwAMTMACiImYnTQHnYrwsomcrmYAHVXE44IlcvlLmTmGQ4GUAswALRRAAnFkcrLCGHZkQYADeRI1OjxMmhsukWCF1FAJWjMWQAFQAD2YE0ualIgVYbglLOY2q82SF6UaEXquKpDBpiTWWmYdhUzF8aHS7G5ZBZPG1fPxZFxqQE7uUzQhnvYsscLEBkzY7EwIgAjkwXeDIQY0EJRBIRvIIGoyBsY7n9JiKd7mOwoHyrkLpVkcuHI-yOQA-Zhea53B5PRJqPn9ALRquQ6E9Wp2uBov7I5nMADUzAAjKrmABpAet-PpDsqLu9r0-xvsgfMe40YcAQjRM9h-wcaLmALgmrIiweq3WOZbCYOyWCwkiOBA3KEmUIripKg53gkdKwRKOR2oyRyeF4zTAb8Bg3N-OqMuuW4xr4cbZJcdAsIWSwrGsX7loBuYEcurFrpuT5dLOrGzCeQh0fAYhnB4ZCMCI2bvrhuxgWgCEwBydReGJUr0jwPC2nYAhsik47pDUdCJKkZLHNhPxoiJKlESC1bMAI3rVIJC4xp0qAYPw4yXNuAAihT8IyFi4My7COBgHidMqGCRMwTmXHYMDBri7pkLKnqOBFhKbpOBjkfGeJwG5J7pL2G7MZCmIGekcBQJlTn6n5CYhflhUecwyrMIk-TRe1HCOLFoiLgYmJQMMMijNlua5ZRhbBPIrnoEVpw1SpFZTn883uTkkwbUVzAAPR2ctjCDbmdEQGQciWYwWgneVzC4HJiQlFdDB8VOmI7a1HgxFRHVdTkfKjUUcAlIFh2iaEPbMgwQVehwwUQYxMV_hNkIvURrG_vRL03Tw3BOcJR0MBJGAXRg2B2BdWjU2AAC-AC6QA&layout=%5B%22Editor%22%2C%22Console%22%5D|hier in WTP]]):
Zeile 320: Zeile 320:
    * Schreibe eine Funktion `ggT(x,y)`, die zwei Zahlen `x` und `y` entgegennimmt und den ggT der beiden zurückgibt.    * Schreibe eine Funktion `ggT(x,y)`, die zwei Zahlen `x` und `y` entgegennimmt und den ggT der beiden zurückgibt.
  
-<nodisp 2>+<nodisp 1>
 ++++Lösung:| ++++Lösung:|
 <html><bottom-editor> <html><bottom-editor>
Zeile 342: Zeile 342:
    * Schreibe eine Funktion `wurzel(x)`, die die Wurzel von `x` auf `0.0001` genau berechnet.    * Schreibe eine Funktion `wurzel(x)`, die die Wurzel von `x` auf `0.0001` genau berechnet.
  
-<nodisp 2>+<nodisp 1>
 ++++Lösung:| ++++Lösung:|
 <html><bottom-editor> <html><bottom-editor>
  • gf_informatik/algorithmen_ii.1764940103.txt.gz
  • Zuletzt geändert: 2025-12-05 13:08
  • von hof